Woodland, H. R. Changes in the polysome content of developing Xenopus laevis embryos. Dev. Biol. 40, 90–101 (1974).Article CAS Google Scholar Brandis, J. W. & Raff, R. A. Translation of oogenetic mRNA in sea urchin eggs and early embryos. Demonstration of a change in translational efficiency following fertilization. Dev. Biol. 67, 99–113 (1978).Article CAS Google Scholar Kronja, I. et al. Widespread changes in the posttranscriptional landscape at the Drosophila oocyte-to-embryo transition. Cell Rep. 7, 1495–1508 (2014).Article CAS Google Scholar Bachvarova, R. & De Leon, V. Stored and polysomal ribosomes of mouse ova. Dev. Biol. 58, 248–254 (1977).Article CAS Google Scholar Burkholder, G. D., Comings, D. E. & Okada, T. A. A storage form of ribosomes in mouse oocytes. Exp. Cell. Res. 69, 361–371 (1971).Article CAS Google Scholar Alberts, B. et al. in Molecular Biology of the Cell 5th edn (eds Anderson, M. & Granum, S.) 1287–1291 (Garland Science, 2008).Locati, M. D. et al. Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons. RNA 23, 446–456 (2017).Article CAS Google Scholar Locati, M. D. et al. Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA types during zebrafish development. RNA 23, 1188–1199 (2017).Article CAS Google Scholar Cenik, E. S. et al. Maternal ribosomes are sufficient for tissue diversification during embryonic development in C. elegans. Dev. Cell 48, 811–826.e6 (2019).Article CAS Google Scholar Danilchik, M. V. & Hille, M. B. Sea urchin egg and embryo ribosomes: differences in translational activity in a cell-free system. Dev. Biol. 84, 291–298 (1981).Article CAS Google Scholar Chassé, H., Boulben, S., Cormier, P. & Morales, J. Translational control of canonical and non-canonical translation initiation factors at the sea urchin egg to embryo transition. Int. J. Mol. Sci. 20, 626 (2019).Article Google Scholar Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H. & Bartel, D. P. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66–71 (2014).Article ADS CAS Google Scholar Stebbins-Boaz, B., Cao, Q., Moor, C. H., de, Mendez, R. & Richter, J. D. Maskin is a CPEB-associated factor that transiently interacts with eIF-4E. Mol. Cell 4, 1017–1027 (1999).Article CAS Google Scholar Smith, P. R., Pandit, S. C., Loerch, S. & Campbell, Z. T. The space between notes: emerging roles for translationally silent ribosomes. Trends Biochem. Sci 47, 477–491 (2022).Article CAS Google Scholar Beckert, B. et al. Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1. Nat. Microbiol. 3, 1115–1121 (2018).Article CAS Google Scholar Beckert, B. et al. Structure of the Bacillus subtilis hibernating 100S ribosome reveals the basis for 70S dimerization. EMBO J. 36, 2061–2072 (2017).Article CAS Google Scholar Barandun, J., Hunziker, M., Vossbrinck, C. R. & Klinge, S. Evolutionary compaction and adaptation visualized by the structure of the dormant microsporidian ribosome. Nat. Microbiol. 4, 1798–1804 (2019).Article CAS Google Scholar Brown, A., Baird, M. R., Yip, M. C., Murray, J. & Shao, S. Structures of translationally inactive mammalian ribosomes. eLife 7, e40486 (2018).Article Google Scholar Van Dyke, N., Baby, J. & Van Dyke, M. W. Stm1p, a ribosome-associated protein, is important for protein synthesis in Saccharomyces cerevisiae under nutritional stress conditions. J. Mol. Biol. 358, 1023–1031 (2006).Article Google Scholar Smith, P. R. et al. Functionally distinct roles for eEF2K in the control of ribosome availability and p-body abundance. Nat. Commun. 12, 6789 (2021).Article ADS CAS Google Scholar Shetty, S., Hofstetter, J., Battaglioni, S., Ritz, D. & Hall, M. N. TORC1 phosphorylates and inhibits the ribosome preservation factor Stm1 to activate dormant ribosomes. Preprint at https://doi.org/10.1101/2022.08.08.503151 (2022).Wells, J. N. et al. Structure and function of yeast Lso2 and human CCDC124 bound to hibernating ribosomes. PLoS Biol. 18, e3000780 (2020).Article CAS Google Scholar Seefeldt, A. C. et al. Structure of the mammalian antimicrobial peptide Bac7(1–16) bound within the exit tunnel of a bacterial ribosome. Nucleic Acids Res. 44, 2429–2438 (2016).Article CAS Google Scholar Casteels, P., Ampe, C., Jacobs, F., Vaeck, M. & Tempst, P. Apidaecins: antibacterial peptides from honeybees. EMBO J. 8, 2387–2391 (1989).Article CAS Google Scholar Krizsan, A., Prahl, C., Goldbach, T., Knappe, D. & Hoffmann, R. Short proline-rich antimicrobial peptides inhibit either the bacterial 70S ribosome or the assembly of its large 50S subunit. ChemBioChem 16, 2304–2308 (2015).Article CAS Google Scholar Metafora, S., Felicetti, L. & Gambino, R. The mechanism of protein synthesis activation after fertilization of sea urchin eggs. Proc. Natl Acad. Sci. USA 68, 600–604 (1971).Article ADS CAS Google Scholar Gambino, R., Metafora, S., Felicetti, L. & Raisman, J. Properties of the ribosomal salt wash from unfertilized and fertilized sea urchin eggs and its effect on natural mRNA translation. Biochim. Biophys. Acta 312, 377–391 (1973).Article CAS Google Scholar Hille, M. B. Inhibitor of protein synthesis isolated from ribosomes of unfertilised eggs and embryos of sea urchins. Nature 249, 556–558 (1974).Article ADS CAS Google Scholar Chassé, H., Boulben, S., Costache, V., Cormier, P. & Morales, J. Analysis of translation using polysome profiling. Nucleic Acids Res. 45, e15 (2017). Google Scholar Chew, G.-L. et al. Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs. Development 140, 2828–2834 (2013).Article CAS Google Scholar Pauli, A. et al. Toddler: an embryonic signal that promotes cell movement via apelin receptors. Science 343, 1248636 (2014).Article Google Scholar Gutierrez, E. et al. eIF5A promotes translation of polyproline motifs. Mol. Cell 51, 35–45 (2013).Article CAS Google Scholar Schuller, A. P., Wu, C. C.-C., Dever, T. E., Buskirk, A. R. & Green, R. eIF5A functions globally in translation elongation and termination. Mol. Cell 66, 194–205.e5 (2017).Article CAS Google Scholar Schmidt, C. et al. Structure of the hypusinylated eukaryotic translation factor eIF-5A bound to the ribosome. Nucleic Acids Res. 44, 1944–1951 (2016).Article Google Scholar Rodnina, M. V., Savelsbergh, A., Katunin, V. I. & Wintermeyer, W. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385, 37–41 (1997).Article ADS CAS Google Scholar Flis, J. et al. tRNA translocation by the eukaryotic 80S ribosome and the Impact of GTP hydrolysis. Cell Rep. 25, 2676–2688.e7 (2018).Article CAS Google Scholar Hayashi, H. et al. Tight interaction of eEF2 in the presence of Stm1 on ribosome. J. Biochem. 163, 177–185 (2018).Article CAS Google Scholar Anger, A. M. et al. Structures of the human and Drosophila 80S ribosome. Nature 497, 80–85 (2013).Article ADS CAS Google Scholar Sun, L., Ryan, D. G., Zhou, M., Sun, T.-T. & Lavker, R. M. EEDA: a protein associated with an early stage of stratified epithelial differentiation. J. Cell. Physiol. 206, 103–111 (2006).Article CAS Google Scholar Ma, X. et al. Regulation of cell proliferation in the retinal pigment epithelium: differential regulation of the death-associated protein like-1 DAPL1 by alternative MITF splice forms. Pigment Cell Melanoma Res. 31, 411–422 (2018).Article CAS Google Scholar Ma, X. et al. DAPL1, a susceptibility locus for age-related macular degeneration, acts as a novel suppressor of cell proliferation in the retinal pigment epithelium. Hum. Mol. Genet. 26, 1612–1621 (2017).Article CAS Google Scholar Deiss, L. P., Feinstein, E., Berissi, H., Cohen, O. & Kimchi, A. Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the γ interferon-induced cell death. Genes Dev. 9, 15–30 (1995).Article CAS Google Scholar Koren, I., Reem, E. & Kimchi, A. DAP1, a novel substrate of mTOR, negatively regulates autophagy. Curr. Biol. 20, 1093–1098 (2010).Article CAS Google Scholar Saini, P., Eyler, D. E., Green, R. & Dever, T. E. Hypusine-containing protein eIF5A promotes translation elongation. Nature 459, 118–121 (2009).Article ADS CAS Google Scholar Park, M. H., Nishimura, K., Zanelli, C. F. & Valentini, S. R. Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38, 491–500 (2010).Article CAS Google Scholar Greber, B. J., Boehringer, D., Montellese, C. & Ban, N. Cryo-EM structures of Arx1 and maturation factors Rei1 and Jjj1 bound to the 60S ribosomal subunit. Nat. Struct. Mol. Biol. 19, 1228–1233 (2012).Article CAS Google Scholar Klingauf-Nerurkar, P. et al. The GTPase Nog1 co-ordinates the assembly, maturation and quality control of distant ribosomal functional centers. eLife 9, e52474 (2020).Article CAS Google Scholar Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat. Methods 18, 176–185 (2021).Article CAS Google Scholar Rossi, D. et al. Evidence for a negative cooperativity between eIF5A and eEF2 on binding to the ribosome. PLoS ONE 11, e0154205 (2016).Article Google Scholar Kao, A. et al. Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes. Mol. Cell. Proteomics 10, M110.002212 (2011).Article Google Scholar Balagopal, V. & Parker, R. Stm1 modulates translation after 80S formation in Saccharomyces cerevisiae. RNA 17, 835–842 (2011).Article CAS Google Scholar Blobel, G. & Potter, V. R. Studies on free and membrane-bound ribosomes in rat liver: I. Distribution as related to total cellular RNA. J. Mol. Biol. 26, 279–292 (1967).Article CAS Google Scholar Marygold, S. J. et al. The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome Biol, 8, R216 (2007).Article Google Scholar Fortier, S., MacRae, T., Bilodeau, M., Sargeant, T. &…